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1 Introduction

The purpose of this project is to use a heuristic approach to the rotating work-
force scheduling problem, further explained in Section 1.1. A method using a
genetic algorithm, first developed by Mörz and Musliu in 2004 [1], is chosen
for this. The algorithm is described in Section 2, while Section 3 presents the
results. The results received by the algorithm is compared to those of the in-
teger model developed in [2]. Section 4 contains a short discussion with some
conclusions regarding the algorithm.

1.1 The Rotating Workforce Scheduling Problem

In many industries, it is required that work should be carried out 24 hours a
day, 7 days a week. Typical work schedules in such contexts consist of a cycle
repeating itself after a few weeks. The work is usually divided into different
shifts, typically day (D), evening (E) and night (N) shifts. Figure 1 below
shows an example of a rotating workforce schedule, where the empty spaces
indicate the rest periods. Person A begins the cycle on week 1, while person B
begins the cycle on week 2, person C begins the schedule on week 3, and so on.
At the end of each week, each person moves down to the following week and the
last person moves up to the first week. This means that the schedule repeats
itself every six weeks.

Week Mo Tu We Th Fr Sa Su
1 D D D D D
2 D D E E
3 N N N N
4 E E E E E
5 D D D D D
6 D D D D D D D

Figure 1: Example of a schedule with day, evening and night shifts.

To be able to construct rotating workforce schedules, a workload matrix is
required. Simply put, the matrix shows the staffing demand on each specific
shift every week. Table 1 shows an example of a workload matrix, which matches
the schedule given in Figure 1.

Table 1: Example of a workload matrix.

Shift Mo Tu We Th Fr Sa Su
N 1 1 1 1
D 3 3 3 3 3 2 2
E 1 1 1 1 1 1 1
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2 Genetic Algorithm

A genetic algorithm is a search heuristics that mimics the process of natural
selection by using techniques inspired by evolution like inheritance, mutation,
crossover and selection. Algorithm 1 gives an overview of the algorithm used in
this project.

Algorithm 1 The genetic algorithm used in this project

1: Initialize a population of N individuals
Repeat

2: Generate offsprings from individuals in the population (parents)
3: Mutate the offsprings
4: Evaluate the parents and the offsprings
5: Replace the population with individuals from the parents and the offsprings

according to their evaluated fitness
Until An individual has good enough fitness
Output Best individual found

To begin with, a population of N random individuals is initialized. These
individuals generate offsprings according to the reproduction phase explained
in Section 2.3. Both the parents and children are then evaluated according
to the fitness calculations in Section 2.4.1, and given different probabilities of
survival until the next generation. This is repeated until some stopping criteria
is satisfied. In this implementation, that stopping criteria is that the fitness of
any individual should be zero. Then, that individual is given as the output.

2.1 Representation of Individuals

An individual of the population is a full cyclic schedule. It is represented by an
w × d-matrix S, where each element swd ∈ A corresponds to a shift or day off
at week w, day d.

2.2 Generation of Initial Population

The initial population is generated randomly, but in a way such that the staffing
demand is always satisfied. This is done by creating each schedule a day at a
time. For every day, required work shifts are randomly distributed among the
weeks/employers. Thus, the staffing demand will always be exactly fulfilled for
every created schedule/individual. As we will see in Sections 2.3.1 and 2.3.2,
the crossover and mutation operators are designed so that this continues to hold
for every generation.

2.3 Reproduction

After an initial population is created, it is necessary to have methods for repro-
duction so that new generations can be produced. This section explains how
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this is implemented in the algorithm.

2.3.1 Crossover

The crossover operator (also known as recombination) uses two random solu-
tions, known as parent solutions, from the population. These parents breed
with a probability, chosen to be 0.5 in the algorithm, and produces two children
solutions.

The operator uses random crossover, where columns are swapped between
the individuals. The algorithm can be broken down into the following steps:

1. Choose a random number x, x ∈ 1, ..., w − 1

2. For x times, choose a unique random column cx

3. Swap the chosen columns between the individuals

First, it is randomly decided how many column swaps that should be made.
Then, the columns to be swapped are chosen randomly. Observe that a column
can never be chosen twice or more since this would affect the number of swaps
and consequently lowering the value of x. The two new solutions received by
these operations are the children.

2.3.2 Mutation

To increase the genetic diversity, mutation is used. After a crossover, mutation
appears in a child with a certain probability. This probability is set to be very
high (0.8) in this algorithm, as Mörz and Musliu [1] stated that it is a powerful
operator.

The move operator consists in swapping two elements in an individual. To
ensure that the staffing demands are still fulfilled, the swap only occurs within
a column. The column, as well as the two elements, are chosen randomly.

2.4 Selection

In the selection phase, N individuals from the parents and children are chosen to
form the next generation. This is done by evaluating the fitness of all individuals
and assign them probabilities to be chosen thereafter.

The fitness of an individual is simply the sum of all constraints it violates.
Hence, lower values are preferred. The exact calculations are explained in Sec-
tion 2.4.1. However, as mentioned above, the algorithm stops when an individual
has the fitness value zero. Thus, all the constraints are satisfied. Consequently,
this means that we only work with hard constraints in this genetic algorithm.

After the fitness has been calculated, the individuals are subdivided into
classes depending on their fitness. This yields a total of p classes, where p is any
number between 1 and the total number of individuals (parents + children).
Class x, x ∈ 1, ..., p, is given the probability 0.5x to be chosen (note that this
assignment favours individuals with better fitness). If a class is chosen, the first
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individual in that class is added to the new population and then removed from
the pool of individuals. If this leads to an empty class, then the entire class is
removed from the pool.

Observe that the assigned class probabilities do not sum up to exactly 1
(especially after a few iterations when classes have been removed). Thus, it is
possible to choose a ”void” class. If this void class is selected, the algorithm
simply redraws until an existing class is picked. (Imagine the roulette wheel
selection, where each pie slice corresponds to a class. With the above imple-
mentation, we receive ”eaten” slices. If one of these slices are chosen by the
spinning pointer, then the pointer is simply re-spun.)

2.4.1 Fitness Evaluation

To calculate the fitness, a number of parameters need to be defined. Table 2
shows these.

Table 2: The different parameters needed for the fitness calculation.

Notation Description
S The schedule (individual) to calculate the fitness for
m The number of different shift types, where the m-th

type is the day-off shift
NWs The number of work blocks in schedule s
NDs The number of days-off blocks in schedule s
NSjs The number of shift sequences of shift type j in

schedule s
WBis A work block i in schedule s
DOBis A days-off block i in schedule s
SBijs The i-th shifts’ block of shift type j in schedule s

MAXW Maximum permitted length of blocks of work days
MINW Minimum permitted length of blocks of work days
MAXSj Maximum permitted length of periods of consecutive

shifts of type j
MINSj Minimum permitted length of periods of consecutive

shifts of type j
C A shift change matrix of dimension m×m×m×m.

Element cijkl is 1 if a sequence of shifts (i, j, k, l) is
permitted, otherwise 0.
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The fitness is then calculated as follows:

f = f1 + f2 + f3 + f4 (1)

where

f1 =

NWs∑
i=1

Distance(WBis, [MINW,MAXW ]) (2)

f2 =

NDs∑
i=1

Distance(DOBis, [MINSm,MAXSm]) (3)

f3 =

m−1∑
j=1

NSjs∑
i=1

Distance(SBijs, [MINSj ,MAXSj ]) (4)

f4 = NumOfNotAllowedShiftSeq(S,C) (5)

The calculations contains two functions: Distance(XBlock,range) and
NumOfNotAllowedShiftSeq(S).

The function Distance(XBlock,range) returns 0 if the length of XBlock is
within the allowed range of two numbers. Otherwise, it returns the distance
from that range. For example, if the feasible range is 3-7 and the length of the
block is 2, then the function will return 1.

The function NumOfNotAllowedShiftSeq(S,C) calculates, by using the shift
change matrix C, how many violations of allowed shift sequences the schedule
S has.

Thus, to summarize, the following constraints are handled in this algorithm:

• Minimum and maximum length of consecutive work days

• Minimum and maximum length of consecutive days off

• Minimum and maximum length of consecutive work days of a specific shift
type (for example, it might be infeasible to work more than 3 night in a
row, but neither day or evening shifts have this restriction)

• Specific sequences of shifts are prohibited, and this is currently the only
constraint that is corrigible in different problem instances by using a dif-
ferent C-matrix. For example, if it is infeasible to work a day shift directly
after a night shift then the sequence to forbid is (n, d, x, x), where n is a
night shift, d is a day shift and x is any other shift.
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3 Results

The algorithm is implemented in Matlab (the code can be found in Appendix
A). Section 3.1 shows the different shifts used, the staffing demand and the
implemented constraints. The resulting schedule is given in Section 3.2, where
the results from the algorithm are compared to the results given by the integer
model, with the same conditions and constraints, designed in [2].

3.1 Shifts, Staffing Demand and Constraints

The different shifts used are seen below in Table 3, while Table 4 shows the
workload matrix.

Table 3: The different shifts.

Shift Time

N 2200 − 0600

D 0600 − 1400

E 1400 − 2200

Table 4: The workload matrix.

Shift Mo Tu We Th Fr Sa Su
N 1 1 1 1
D 3 3 3 3 3 3 3
E 1 1 1 1 1

The constraints used are the following:

• It is prohibited to work more than 6 consecutive days, regardless of shift
type.

• After the last night shift in a work block, there should be at least 50 hours
off until the next work shift starts.
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3.2 Resulting Schedules

The schedule given by the genetic algorithm is seen in Figure 2a, while Figure
2b is given by the integer model.

Week Mo Tu We Th Fr Sa Su
1 D D D D D D
2 D E D D D
3 E E E D D
4 D D D D D
5 N N N N
6 D D D E D

(a) The genetic algorithm solution
Solution time: 4.65 s

Week Mo Tu We Th Fr Sa Su
1 D D D D D D
2 D E E E E D
3 N N N N
4 E D D D D D
5 D D
6 D D D D D D

(b) The integer model solution
Solution time: 7.19 s

Figure 2: The resulting schedules.

Both solutions are feasible with regard to the constraints. At a first glance,
it looks as though the genetic algorithm performs better with regard to the
solution times. However, the solution time for the genetic algorithm varies on
different runs. This is because the genetic algorithm is not deterministic. As
described in Section 2, it contains several steps where randomness is involved
(for instance the generation of an initial population, or the crossover operator).
Table 6 shows some interesting data received during the 50 runs. As is clear by
the table, the variance on the solution times and number of generations is quite
large.

Table 6: Data received after 50 runs of the genetic algorithm.

Condition Result

Shortest solution time 0.27 s

Longest solution time 149.48 s

Average solution time 16.41 s

Minimum number of generations 37

Maximum number of generations 21958

Average number of generations 2343
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4 Discussion

The method is very limited in its present form since it is difficult to implement
constraints simply by forbidding shift sequences. Currently, it is not possible
to have any constraints which need longer time span than 4 days. (An example
of such a constraint is that is should be infeasible to work two weekends in a
row.) However, this problem can of course be solved by adding a fitness function
which looks at precisely weekend distribution. The disadvantage though is that
the algorithm is no longer general if this is done.

Another disadvantage of this algorithm compared to the integer model in
[2] is that it can not handle soft constraints. The idea with soft constraints is
that you can penalize certain attributes and sort constraints in a hierarchical
order. This is difficult to implement in this algorithm since we always look
for an individual with a fitness value of zero. An idea is to use two different
fitness function values, where one represents the hard constraints and the other
represents the soft constraints. The problem with this is that it is hard to
formulate stopping criteria (unless both fitness function values are zero) other
than a preset number of iterations.

Furthermore, the genetic algorithm in this project is a heuristic. Thus, it
is not guaranteed that an optimal solution can always be found. The integer
model solves this by using soft constraints, but, as stated above, it is difficult
to use soft constraints in this algorithm. Moreover, the results show that the
integer model outperforms the genetic algorithm in term of solution times. (This
comparison is not very scientific though since runs where done on computers
with different performance, and 50 runs is far too few to make a judgement.)
In conclusion, this genetic algorithm may not be worthwhile to develop further
since better alternatives exist.

5 References

[1] N. Musliu and M. Mörz. Genetic Algorithm for Rotating Workforce Schedul-
ing Problem. In Second IEEE International Conference on Computational
Cybernetics, 2004.

[2] C. Granfeldt. Rotating Workforce Scheduling. Master’s thesis, Linköping
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% Main Loop 

  
%-------------------------------------------------------------------------- 
% Setup problem data 
%-------------------------------------------------------------------------- 
setupFile; 

  
%-------------------------------------------------------------------------- 
% Genetic Algorithm 
%-------------------------------------------------------------------------- 
nrRuns = 50; 
time = zeros(1,nrRuns); 
generations = zeros(1,nrRuns); 

  
for k=1:nrRuns 
tic; 

  
% Define size of population 
N = 2*n; 

  
% Generation of initial population 
P_initial = GenerateInitialPop(R,A,n,w,N); 

  
% Generate new population 
P = P_initial; 

  
gen = 1; % generation 
while(1) 
    Children = zeros(size(P)); 

         
    % Crossover 
    crossoverProb = 0.5; 
    nrChildren = 0; 
    for i=1:N/2 
        p1 = randi([1,12],1); 
        while(1) 
            p2 = randi([1,12],1); 
            if p2 ~= p1 
                break; 
            end 
        end   
        if rand < crossoverProb 
            [child1,child2] = CrossoverOperator(P(:,:,p1),P(:,:,p2),w); 
            nrChildren = nrChildren+1; 

A Appendix



            Children(:,:,nrChildren) = child1; 
            nrChildren = nrChildren+1; 
            Children(:,:,nrChildren) = child2; 
        end 
    end 

     
    Children = Children(:,:,1:nrChildren); 

     
    % Mutation of children 
    mutationProb = 0.8; 
    for i=1:nrChildren 
        if rand < mutationProb 
           S = Children(:,:,i); 
           S_mutated = MutationOperator(S,n,w); 
           Children(:,:,i) = S_mutated; 
        end 
    end 

  
    % Calculate fitness of parents and children 
    fitness = zeros(N+nrChildren,2); 
    fitness(:,1) = 1:N+nrChildren; 

  
    for i=1:N 
        f = CalculateFitness(P(:,:,i),MAXW,MINW,MINS,MAXS,m,C); 
        fitness(i,2) = f; 
    end 
    for i=1:nrChildren 
        f = CalculateFitness(Children(:,:,i),MAXW,MINW,MINS,MAXS,m,C); 
        fitness(N+i,2) = f; 
    end 

     
    feasibleSolution = find(fitness(:,2) == 0); 
    if ~isempty(feasibleSolution) 
        sol = feasibleSolution(1); 
        if sol <= N 
            %disp(P(:,:,sol)); 
            f = CalculateFitness(P(:,:,sol),MAXW,MINW,MINS,MAXS,m,C); 
        else 
            %disp(Children(:,:,sol-N)); 
            f = CalculateFitness(Children(:,:,sol-N),MAXW,MINW,MINS,MAXS,m,C); 
        end 
        generations(k) = gen; 
        break; 
    end 

     
    Classification = ClassifyIndividuals(fitness); 

     
    P_new = SelectionOperator(P,Children,Classification); 
    P = P_new; 
    gen = gen+1; 
end 

  
time(k) = toc; 
end 
%------------------------------------------------------------------------- 



% setupFile 
%------------------------------------------------------------------------- 

  
% Number of employees 
n = 6; 

  
% Length of schedule 
w = 7; 

  
% Set of m shifts, where shift m = day off 
A = [1 2 3 0]; 
m = length(A); 
%A = ['n' 'd' 'e' 'x']; 

  
% The workforce matrix 
R = [1 1 1 1 0 0 0; 
     3 3 3 3 3 3 3; 
     1 1 1 1 1 0 0]; 

  
%------------------------------------------------------------------------- 
% Constraints 
%------------------------------------------------------------------------- 

  
% Sequences of shifts permitted to be assigned to employees 
C = ones(m,m,m,m); 

  
% Must have 50 hours off after night shift 
for i=1:m 
    for j=1:m 
        C(1,2,i,j) = 0; 
        C(1,3,i,j) = 0; 
    end 
    for j=1:m-1 
        C(1,m,j,i) = 0; 
    end 
end 
C(1,m,m,1) = 0; 
C(1,m,m,2) = 0; 

  
% Maximum and minimum length of periods of consecutive shifts 
MAXS = [6 6 6 30]; 
MINS = [1 1 1 1]; 

  
% Maximum and minimum length of blocks of workdays 
MAXW = 6; 
MINW = 1; 

  



% GenerateInitialPop 
function [P] = GenerateInitialPop(R,A,n,w,N) 

  
% Create individuals for the population 
P = zeros(n,w,N); 
for i=1:N 
    S = GenerateSchedule(R,A,n,w); 
    P(:,:,i) = S; 
end 

  
end 

  

  
function [S] = GenerateSchedule(R,A,n,w) 

  
S = zeros(n,w); 
for i=1:w 
    v = zeros(n,1); % column in schedule 

     
    shiftArray = []; 
    shift = 1; 
    for r=R(:,i)' 
        temp = A(shift)*ones(1,r); 
        shiftArray = [shiftArray,temp]; 
        shift = shift+1; 
    end 
    availEmployees = 1:n; 
    for j=shiftArray 
        r = randi([1,length(availEmployees)],1); % get random employee 
        e = availEmployees(r);  
        v(e) = j; 
        availEmployees(r) = []; 
    end 

  
    S(:,i) = v; 

     
end 

  
end 

 

 

 

  



% CrossoverOperator 
% Swap x random columns 
function [S3,S4] = CrossoverOperator(S1,S2,w) 

  
S3 = S1; 
S4 = S2; 

  
x = randi([1,w-1],1); 
C = zeros(1,x); 
for i=1:x 
    while(1) 
        c = randi([1,w],1); 
        if(isempty(find(C == c, 1))) 
            break; 
        end 
    end 
    C(i) = c; 

     
    S3(:,c) = S2(:,c); 
    S4(:,c) = S1(:,c); 
end 

  
end 

 

 

 

% MutationOperator 
% Performs a mutation 
function [S_new] = MutationOperator(S,n,w) 

  
element1 = randi([1,n],1); 
while(1) 
    element2 = randi([1,n],1); 
    if element1 ~= element2 
        break; 
    end 
end 
column = randi([1,w],1); 

  
S_new = S; 

  
S_new(element1,column) = S(element2,column); 
S_new(element2,column) = S(element1,column); 

  
end 

  



% CalculateFitness 
% Calculates the fitness of an individual 
function [fitness] = CalculateFitness(S,MAXW,MINW,MINS,MAXS,m,C) 

  
% NW = number of work blocks 
% WB[i] = a work block i 
[WB,NW] = FindWorkBlocks(S); 
f1 = 0; 
for i=1:NW 
    f1 = f1 + CalculateDistance(WB(i,:),[MINW,MAXW]); 
end 

  
% ND = number of days of blocks 
% DOB[i] = a days off block i 
[DOB,ND] = FindDaysOffBlocks(S); 
f2 = 0; 
for i=1:ND 
    f2 = f2 + CalculateDistance(DOB(i,:),[MINS(m),MAXS(m)]); 
end 

  
% NS[j] = number of shift sequences blocks of shift j 
% SB[i,j] = the i-th shifts block of shift j 
[SB,NS] = FindShiftSequencesBlocks(WB,m); 
f3 = 0; 
for j=1:m-1 
    for i=1:NS 
        f3 = f3 + CalculateDistance2(SB(i,j),[MINS(j),MAXS(j)]); 
    end 
end 

  
%f4 = 0; 
f4 = ForbiddenShiftSequences(S,C,m); 

  
fitness = f1 + f2 + f3 + f4; 

  
end 

  
function [WB,NW] = FindWorkBlocks(S) 
[n,w] = size(S); 
WB = zeros(n*w,n*w); 

  
row = 1; 
column = 1; 
for i = 1:n 
    for j=1:w 
        s = S(i,j); 

         
        if s == 0 
            row = row+1; 
            column = 1; 
        else 
            WB(row,column) = s; 
            column = column+1; 
        end 

     



    end 
end 

  
% Check if last week has a work block overlapping the first week 
WB = WB(any(WB,2),:); 
[NW,~] = size(WB); 
if (and(S(n,w)~=0,S(1,1)~=0)) 
    a = WB(1,:); 
    a(a==0) = []; 
    b = WB(NW,:); 
    b(b==0) = []; 
    c = [b,a,zeros(1,n*w-length(b)-length(a))]; 
    WB(NW,:) = c; 
    WB(1,:) = []; 
    NW = NW-1; 
end 
WB = WB(:,any(WB)); 

  
end 

  
function [DOB,ND] = FindDaysOffBlocks(S) 

  
[n,w] = size(S); 
DOB = zeros(n*w,n*w); 

  
row = 1; 
column = 1; 
for i = 1:n 
    for j=1:w 
        s = S(i,j); 

         
        if s ~= 0 
            row = row+1; 
            column = 1; 
        else 
            DOB(row,column) = 1; 
            column = column+1; 
        end 

     
    end 
end 

  
% Check if last week has a days off block overlapping the first week 
DOB = DOB(any(DOB,2),:); 
[ND,~] = size(DOB); 
if (and(S(n,w)==0,S(1,1)==0)) 
    a = DOB(1,:); 
    a(a==0) = []; 
    b = DOB(ND,:); 
    b(b==0) = []; 
    c = [b,a,zeros(1,n*w-length(b)-length(a))]; 
    DOB(ND,:) = c; 
    DOB(1,:) = []; 
    ND = ND-1; 
end 



DOB = DOB(:,any(DOB)); 

  
end 

  

  
function [SB,NS] = FindShiftSequencesBlocks(WB_in,m) 
[NW,len] = size(WB_in); 
WB = [WB_in , zeros(NW,1)]; 
SB = zeros(len,m); 

  
for i=1:NW 
    s_prev = WB(i,1); 
    counter = 0; 
    for j=1:len+1 
        s = WB(i,j); 
        if s == s_prev 
            counter = counter+1; 
        else 
            SB(counter,s_prev) = SB(counter,s_prev)+1; 
            if s == 0 
                break; 
            end 
            counter = 1; 
            s_prev = s; 
        end 
    end 

     
end 

  
NS = len; 

  
end 

  
function [nr] = ForbiddenShiftSequences(S,C,m) 
nr = 0; 

  
[n,w] = size(S); 
S_string = zeros(1,n*w); 
index = 1; 
for i=1:n 
    S_string(index:index+w-1) = S(i,:); 
    index = index+w; 
end 

  
for i=1:n*w 
    if i+1 > n*w 
        j = i-n*w; 
    else 
        j=i; 
    end 
    if i+2 > n*w 
        k = i-n*w; 
    else 
        k=i; 
    end 



    if i+3 > n*w 
        l = i-n*w; 
    else 
        l=i; 
    end 
    a = S_string(i); 
    b = S_string(j+1); 
    c = S_string(k+2); 
    d = S_string(l+3); 
    % Ugly workaround index 0 
    if a == 0 
        a = m; 
    end 
    if b == 0 
        b = m; 
    end 
    if c == 0 
        c = m; 
    end 
    if d == 0 
        d = m; 
    end 

  
    if C(a,b,c,d) == 0 
        nr = nr+1; 
    end 
end 

  
end 

  
function [d] = CalculateDistance(XBlock,range) 

  
% remove empty columns 
XBlock = XBlock(any(XBlock),:); 

  
x = length(XBlock); 

  
if x < range(1) 
    d = abs(range(1)-x); 
elseif x > range(2) 
    d = abs(x-range(2)); 
else 
    d = 0; 
end 

  
end 

  

  

  
function [d] = CalculateDistance2(x,range) 

  
if x == 0 
    d = 0; 
    return; 
end 



  
if x < range(1) 
    d = abs(range(1)-x); 
elseif x > range(2) 
    d = abs(x-range(2)); 
else 
    d = 0; 
end 

  
end 

 

 

% Classify Individuals 
function [Class] = ClassifyIndividuals(fitness) 
[N,~] = size(fitness); 
Class = [fitness,zeros(N,2)]; 

  
[~,d2] = sort(Class(:,2)); 
Class = Class(d2,:); 
f_prev = 0; 
c = 1; 
p = 0; 
for i=1:N 
    f = Class(i,2); 
    if f ~= f_prev 
        p = p+(1/2)^c; 
        c = c+1; 
    end 
    Class(i,3) = c-1; 
    f_prev = f; 

  
    Class(i,4) = p; 
end 

  
end 

 

 

 

% SelectionOperator 
function [Pop] = SelectionOperator(Parents,Children,Class) 

  
[~,~,nrParents] = size(Parents); 
[~,~,nrChildren] = size(Children); 
Pop = zeros(size(Parents)); 
[nrInd,~] = size(Class); 
% Get table of intervals 
nrClasses = max(Class(:,3)); 
ClassTable = zeros(nrClasses,3); 
ClassTable(:,1)=1:nrClasses; 



p = 0; 
for i=1:nrClasses-1 
    p = p + (1/2)^i; 
    ClassTable(i,3) = p; 
    ClassTable(i+1,2) = p; 

     
end 
p = p + (1/2)^nrClasses; 
ClassTable(nrClasses,3) = p; 

  
classesLeft = [1:nrClasses]; 
indLeft = [1:nrInd]; 
indsAdded = 0; 
while(1) 
    p = rand; 

     
    class = 0; 
    for i=1:nrClasses 
        if p < ClassTable(i,3) 
            class = i; 
            break; 
        end 
    end 
    if class == 0 
        continue; 
    elseif classesLeft(class) == 0 
        continue; 
    end 

     
    inds_index = Class(:,3) == class; 
    inds = Class(inds_index,1); 

  
    for i=inds' 
        if indLeft(i) ~= 0 
            indsAdded = indsAdded+1;             
            if i <= nrParents 
                Pop(:,:,indsAdded) = Parents(:,:,i); 
            else 
                Pop(:,:,indsAdded) = Children(:,:,i-nrParents); 
            end 
            indLeft(i) = 0; 
            if i == inds(length(inds)) 
                classesLeft(class) = 0; 
            end 
            break; 
        end 
    end 
    if indsAdded == nrParents 
        break; 
    end 
end 

  
end 

 


